Algebraische Topologie by Prof. Dr. Karl Heinz Mayer (auth.)

By Prof. Dr. Karl Heinz Mayer (auth.)

Show description

Read Online or Download Algebraische Topologie PDF

Similar topology books

Tel Aviv Topology Conference: Rothenberg Festschrif : International Conference on Topology, June 1-5, 1998 Tel Aviv (Contemporary Mathematics)

This quantity offers the lawsuits of the Tel Aviv foreign Topology convention held through the certain Topology software at Tel Aviv college. The e-book is devoted to Professor Mel Rothenberg at the social gathering of his sixty fifth birthday. His contributions to topology are good known---from the early paintings on triangulations to varied papers on transformation teams and on geometric and analytic facets of torsion concept.

Topology, 2/E

For a senior undergraduate or first yr graduate-level direction in creation to Topology. applicable for a one-semester direction on either common and algebraic topology or separate classes treating every one subject separately.
This textual content is designed to supply teachers with a handy unmarried textual content source for bridging among common and algebraic topology classes. separate, designated sections (one on common, aspect set topology, the opposite on algebraic topology) are every one appropriate for a one-semester direction and are dependent round the similar set of easy, center themes. non-compulsory, self sustaining subject matters and functions could be studied and built intensive reckoning on direction wishes and preferences.

Table of Contents

I. normal TOPOLOGY.
1. Set conception and Logic.

2. Topological areas and non-stop Functions.

three. Connectedness and Compactness.

four. Countability and Separation Axioms.

five. The Tychonoff Theorem.

6. Metrization Theorems and Paracompactness.

7. whole Metric areas and serve as Spaces.

eight. Baire areas and size Theory.

II. ALGEBRAIC TOPOLOGY.
nine. the basic Group.

10. Separation Theorems within the Plane.

11. The Seifert-van Kampen Theorem.

12. class of Surfaces.

13. category of overlaying Spaces.

14. functions to workforce Theory.

Index.

Surface Topology

This up to date and revised version of a extensively acclaimed and winning textual content for undergraduates examines topology of contemporary compact surfaces in the course of the improvement of straightforward principles in aircraft geometry. Containing over 171 diagrams, the method enables an easy remedy of its topic quarter. it really is quite appealing for its wealth of purposes and diversity of interactions with branches of arithmetic, associated with floor topology, graph thought, team thought, vector box idea, and airplane Euclidean and non-Euclidean geometry.

Geometry of polynomials

Through the years because the first version of this recognized monograph seemed, the topic (the geometry of the zeros of a fancy polynomial) has persevered to reveal a similar remarkable energy because it did within the first a hundred and fifty years of its background, starting with the contributions of Cauchy and Gauss.

Extra resources for Algebraische Topologie

Example text

Zeigen Sie, daB F = {U c IR n I/Rn \ U ist endlich oder 0 E IR n \ U} eine Topologie auf IR n ist und (/Rn ,F) normal ist. 5. Es seien X ein T2 -Raum, Reine Aquivalenzrelation auf X und 1r : X -+ XI R die natiirliche Projektion. Zeigen Sie: Wenn eine stetige Abbildung s : XI R -+ X existiert mit 1r 0 S = Id, so ist XI R hausdorffsch. 6. X und Y seien topologische lliiume, Y hausdorffsch und I, g : X -+ Y seien stetige Abbildungen, die auf einer dichten Teilmenge von X iibereinstimmen. Folgern Sie, daB f = gist.

20 Bemerkungen. Die Teilraumtopologie wurde von F. Hausdorff in seinem grundlegenden Buch 1914 angegeben. H. Tietze definierte 1923 Topologien fur das Produkt und fiir die Summe von topologischen lliiumen. 4 vorgestellten iiberein. Eine Basis fiir die Produkttopologie bilden bei Tietze alle Produkte von offenen Mengen in den einzelnen Faktoren. 4 definierte und nach dem in der Einleitung formulierten Prinzip "natiirliche" Topologie wurde von A. Tychonoff 1930 angegeben. Eine Definition der Quotiententopologie findet sich bei P.

Da h- 1 (W) offen ist, ist Ao offen. 23 eine kompakte Umgebung C von ao. Dann sei § 4. Kompakte Riiume 49 U = {y E X I {y} x C C h-l(W)}. Es wird gezeigt, daB U offen ist und daB U = j-l j(U) ist. Damit ist auch j(U) offen in Y, und j(U) x C ist eine Umgebung von (xo,ao) mit j(U) xC c W. Daher ist W Umgebung jedes seiner Elemente und damit offen. U ist offen: Wenn y E U ist, dann ist {y} x C C h-l(W). ), also V c U. j-l j(U) = U: Zunachst ist U C j-l j(U). Andererseits ist j-l j(U) X C = h- 1 h(U X C) c h- 1 (h h- 1 (W)) = h-l(W).

Download PDF sample

Rated 4.73 of 5 – based on 36 votes